
This article describes my basic activities at 
getting my Raspberry PI do the iGate / 
Digipeater work, either using a Argendata 
SMT KISS modem, or using a sound modem 
with a cheap USB sound dongle. 
On December the 20th 2012, I received a 
nice little plastic box, containing the 
raspberry PI. It came together with a SD-
card with the Raspbian “wheezy” operating 

system, and I configured myself in parallel an SD card with Arch Linux. 
The next steps will be to find which software is most suited to the needs 
for , eventually, ending up in PI1TWE-2, the new APRS digipeater / iGate 
in Hengelo. 
Today – april 2013, , i have the little bugger up and running, and both the 
normal KISS, as well as the ax25 KISS and soundmodem work. 
Well, most of the time. What is left to do is to develop a circuit to do the 
TX from one of the GPIO pins. 
 
 
Last but not least i would like to 
thank Phil - M0DNY for not only 
using his website, but also helping 
me out from his holiday address. 
See his website  
 
 
 
 
https://www.thecraag.com/Main_Page 
 
 
 
Setting up a Raspberry PI Mod B for Radio amateur – APRS use. 
(work in progress – dated: 1 May 2013) 
 
This article describes my efforts in getting a Raspberry PI mod B 512K 
working as an iGate / Digipeater. 
I visited many sites to get information, learned a lot along the way and 
decided to use https://www.thecraag.com/Raspberry_Pi_APRS_Digipeater 
and write my own experiences as a noob on Linux along the way 
 
The aim is come at: 
A working Raspberry PI with Arch Linux as OS, an APRS iGATE / 
Digipeater and you will have the choice between APRX and 
DIXPRS, and as TNC either a sound modem using a cheap USB 
Sound dongle based on C-Media chip technology, or a KISS 
hardware TNC such as the TNC-X 
 



Since DIXPRS requires Python 2.7 and ARCHLINUX comes with Python 3, I 
have decided for the time being to stick with APRX as programme for 
APRS on the ArchLinux distro’s 
However, you will find elsewere on my site info on the Raspian Wheezy 
distro using Python 2.7.3, hence the use of dixprs is possible. 
 
Preparing a SD card with Arch Linux 
Arch Linux ARM is based on Arch Linux, which aims for simplicity and full 
control to the end user. Note that this distribution may not be suitable for 
beginners. The latest version of this image uses the hard-float ABI, and 
boots to a command prompt in around ten seconds. Get it from the 
Raspberry site: http://www.raspberrypi.org/downloads 
Default login    :Username: root Password: root 
Copying an image to the SD card in Mac OS X (command line)  (for 
windows, see the Raspberry's website for the windows solution...  
 
· From the terminal run df -h  
· Connect the SD card reader with the SD card inside or use the build in 
card reader 
· Run df -h again and look for the new device that wasn't listed last time. 
Record the device name of the file system's partition, for example, 
/dev/disk1s2  
· Unmount the partition so that you will be allowed to overwrite the disk:  
· sudo diskutil unmount /dev/diskXsY ( X maybe 1 or 2... Y the same 
|or: open Disk Utility and unmount the partition of the SD card (do not 
eject it, or you have to reconnect it)  
 
Using the device name of the partition work out the raw device name for 
the entire disk, by omitting the final "sx" and replacing "disk" with "rdisk" 
(this is very important: you will lose all data on the hard drive on your 
computer if you get the wrong device name). Make sure the device name 
is the name of the whole SD card as described above, not just a partition 
of it (for example, rdisk3, not rdisk3s1. Similarly you might have another 
SD drive name/number like rdisk2 or rdisk4, etc. -- recheck by using the 
df -h command both before & after you insert your SD card reader into 
your Mac if you have any doubts!):  
 
For example, /dev/disk2s1 => /dev/rdisk2  
 
In the terminal write the image to the card with this command, using the 
raw disk device name from above (read carefully the above step, to be 
sure you use the correct rdisk# here!):  
 
dd bs=1m if=~/path/where/imigage/is/archlinux-hf-2012-09-
18.img of=/dev/rdisk2 
 

CLONING A GOOD CARD 



 
a. sudo dd if=/dev/disk2 of=/path/to/your/image//arch-
aprx.img bs=1m        
b. sudo dd bs=1m if=/path/to/your/image//arch-aprx.img 
of=/dev/rdisk2       
If the above command report an error (dd: bs: illegal numeric value), 
please change bs=1M to bs=1m  
After the dd command finishes, eject the card:  
# sudo diskutil eject /dev/rdisk3 (or: open Disk Utility and eject the 
SD card)  
Insert it in the Raspberry Pi, and power it up ! 
  
For the rest of this article it is assumed that you are logged in as root on 
your Raspberry 
Hence after login, change the root password to something more 
spectacular 
The command # passwd will do it for you 
Note: in case your sd card is larger than 2Gb in size, follow this article to 
make maximum use of the space on the card. http://www.raspberrypi-
spy.co.uk/2012/06/resize-sd-card-partitions/  
Upgrade of OS and Setting up of the wireless (if available) 
 

PREPARING THE RASPBERRY PI MOD II 

 
Connect to Raspberry PI using a wired connection, find the IP address, 
SSH into it and then execute: 
# pacman –Suy (this will take some time so grab a cup of coffee or so) 
Set your locale  
The default system locale is configured in /etc/locale.conf. To set the 
default locale, do the following: 
· Make the locales available to the system by uncommenting them in 
/etc/locale.gen and then executing locale-gen as root. 
· The locale set via localectl must be one of the uncommented locales in 
/etc/locale.gen. 
Here is an example file: 
/etc/locale.conf 
# Enable UTF-8 with Dutch settings. 
LANG="en_NL.UTF-8" 
# Keep the default sort order (e.g. files starting with a '.' 
# should appear at the start of a directory listing.) 
LC_COLLATE="C" 
# Set the short date to mm-dd-yyyy (test with "date +%c") 
LC_TIME="en_NL.UTF-8" 
If you intend to use your Raspberry on the net with WIFI, do the 
following, other while skip this section. 
 



Wireless  
 
You will need to install additional programs to be able to configure and 
manage wireless network profiles for netcfg. 
NetworkManager and Wicd are other popular alternatives. 
Install the required packages:  
# pacman -S wireless_tools wpa_supplicant wpa_actiond dialog iw  
If your wireless adapter requires a firmware (as described in the above 
Establish an internet connection section and also here), install the 
package containing your firmware. For example: 
# pacman -S zd1211-firmware  
After finishing the rest of this installation and rebooting, you can connect 
to the network with wifi-menu <interface> (where <interface> is the 
interface of your wireless chipset), which will generate a profile file in 
/etc/network.d named after the SSID. There are also templates available 
in /etc/network.d/examples/ for manual configuration.  
# wifi-menu <interface>  
 
Warning: If you're using wifi-menu, this must be done *after* your 
reboot when you're no longer chrooted. The process spawned by this 
command will conflict with the one you have running outside of the 
chroot. Alternatively, you could just configure a network profile manually 
using the templates previously mentioned so that you don't have to worry 
about using wifi-menu at all. 
Enable the net-auto-wireless service, which will connect to known 
networks and gracefully handle roaming and disconnects:  
# systemctl enable net-auto-wireless.service  
 
Note: Netcfg also provides net-auto-wired, which can be used in 
conjunction with net-auto-wireless. 
Make sure that the correct wireless interface (e.g. wlp3s0) is set in 
/etc/conf.d/netcfg:  
# nano /etc/conf.d/netcfg 
WIRELESS_INTERFACE="wlp3s0" 
 
Reboot again……. 
 
testing the network with :  
# iw dev wlan0 link 
[root@alarmpi ~]# iw dev wlan0 link 
Connected to 60:33:4b:e6:6a:25 (on wlan0) 
SSID: XXXXXXXXXXXXX  (your network) 
freq: 2462 
RX: 71084 bytes (549 packets) 
TX: 2651 bytes (36 packets) 
signal: -79 dBm 
tx bitrate: 72.2 MBit/s MCS 7 short GI 
bss flags: short-preamble short-slot-time 



dtim period: 3 
beacon int: 100 
and check your ip adres:  
# ifconfig | less 
output: 
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 
inet 10.0.1.23 netmask 255.255.255.0 broadcast 10.0.1.255 
inet6 fe80::20f:54ff:fe02:28da prefixlen 64 scopeid 0x20<link> 
ether 00:0f:54:02:28:da txqueuelen 1000 (Ethernet) 
RX packets 25 bytes 2746 (2.6 KiB) 
 
Finish installation of remainder of mandatory packages 
# pacman –S screen   (handy to have a process run in a 
screen) 
# pacman -S base-devel    (for final compiling aprx)  
# pacman -S alsa-utils   (testing your soundcard / 
dongle) 
# pacman -S screen base-devel alsa-utils python2 
Installing ax25 library and other test tools 
 
First Install yaourt, which is another package manager to handle packages 
outside Arch Linux repository…. 
# pacman –S yaourt 
Install pkg-config 
# yaourt –SA libax25 ax25-apps ax25-tools 
For some of the packages, the PKGBUILD may need alteration. Yaourt will 
prompt you to edit the PKGBUILD during the install. Change the line:  
arch=('i686' 'x86_64') ==> arch=('i686' 'x86_64' 'armv6h')  
 

Installing the sound modem 

(checking pkg-config is at least version 0.9.0... yes) 
# yaourt –SA soundmodem 
You will have to adapt the arch again – so choose yes, and indicate which 
editor you favour… 
 
Preparing the sound modules: 
Make sure the USB sound dongle or other soundcard is connected. 
Test by :  
# aplay –l 
If the result shows you a sound module, you’re good to go. 
However, you may end up with two sound-cards, the build-in one from 
RPI being the default, and that is not what you want for unattended aprs 
operation. 
So here's the recipe to change the default sound-card to the USB dongle. 
  
Set the default sound card 



If your sound card order changes on boot, you can specify their order in 
any file ending with .conf in /etc/modprobe.d (/etc/modprobe.d/alsa-
base.conf is suggested). For example, if you want your mia sound card to 
be #0: 
# nano /etc/modprobe.d/alsa-base.conf 
options snd slots=snd_bcm2835,snd_usb_audio options snd_usb_audio 
index=0 options snd_bcm2835 index=2  
snd_usb_audio and snd_bcm2835 are the modules used by the respective 
cards. This configuration assumes you have one usbsound card and the 
bcm2835 (onboard). 
You can also provide an index of -2 to instruct ALSA to never use a card 
as the primary one. 
  
Since we are using alsa, we start-up the alsamixer 
# alsamixer 
Set your levels, both playback and record (pres the F5 / F6 ) 
For more info see: http://www.alsa-
project.org/main/index.php/SoundcardTesting  
If necessary you can test our sound-card now by executing # speaker-
test -c 2 
It will generate pink noise from both channels. 
If it works then test the recording of some (APRS) audio – hook up your 
speaker or radio lf_out to the mic input and execute the following… 
Record a file :                      # arecord -vv testsound.wav  (Ctrl-C to 
stop) 
play back that same file  :   # aplay testsound.wav 
You will hear the quality of the sound and have to determine if it is 
good enough to be put on the air.....  
  
Next, create or edit the soundmodem config file in /etc/ax25. (nano 
/etc/ax25/soundmodem.conf) 
Sample file – do change the callsign and make sure the interface is the 
same as in axports 
<?xml version="1.0"?> 
<modem> 
<configuration name="AX25"> 
<chaccess txdelay="150" slottime="100" ppersist="40" fulldup="0" 
txtail="10"/> 
<audio type="alsa" device="plughw:0,0" halfdup="1" 
capturechannelmode="Mono"/> 
<ptt file="none" hamlib_model="" hamlib_params="" gpio="0"/> 
<channel name="sm0"><mod mode="afsk" bps="1200" f0="1200" 
f1="2200" diffenc="1" inlv="8" fec="1" tunelen="32" 
synclen="32"/><demod mode="afsk" bps="1200" f0="1200" f1="2200" 
diffdec="1" inlv="8" fec="3" mintune="16" minsync="16"/><pkt 
mode="MKISS" ifname="sm0" hwaddr="PA0ESH-12" ip="44.94.11.8" 
netmask="255.255.255.0" broadcast="44.94.11.255" 
file="/dev/soundmodem0" unlink="1"/></channel></configuration> 



</modem> 
change hwaddr="XXXX-1" into your own callsign and ssid  
Then run: 
soundmodem -v5 > /tmp/soundmodem.log & 
 
 
(in case you are not logged in as root – then add sudo before make 
install.) 
 
The order is first ax25 service using the soundmodem and only then aprs. 
I noticed that i needed some extra delay at boot time hence the updated 
doham script. 
Once the soundmodem configuration is setup you can use the folowing 
script to bring up your AX25 system using the soundmodem driver. 
 
#!/bin/sh 
#BOF doham script 
# start ax25 with the soundmodem driver using the port after a wait of 
30-60 seconds 
# defined in /etc/ax25/axports 
sleep 30 
/usr/sbin/soundmodem /etc/ax25/soundmodem.conf -R -
M >/dev/null 2>/dev/null& 
sleep 1 
/sbin/route add -host 44.94.11.8 dev sm0 
# route to  the netrom IP capable nodes 
/sbin/route add -
net 44.94.11.0 netmask 255.255.255.0 gw 44.94.11.8 dev sm0 
sleep 1 
# listen for various incoming connects  
# (do not forgetto firs configure then in /etc/ax25/ax25d.conf) 
/usr/sbin/ax25d 
sleep 1 
# listen for stations heard 
/usr/sbin/mheardd 
# now start aprx 
/sbin/aprx 
#END doham script 
 
 
Place it anywhere in the path (I use etc/ax25/ directory), chmod 755 and 
run it from the prompt to test. 
The red led in the sound dongle should start flashing.. in case of problems 
check with alsamixer that the card is not muted etc. The levels in the 
picture worked for me. 
  



 
  
Once you are satisfied – write the service file for aprx called aprx.service 
and put it in the directory /etc/systemd/system/ 
chmod 755 /etc/systemd/system/aprx.service and then execute # 
systemctl enable /etc/systemd/system/aprx.service 
  
Below is the file content. 
 
# BOF aprx.service 
[Unit] 
Description=APRX Server, an iGate and Digipeater 
# After=dev-ttyUSB0.device in case you work with a TNC using a usb to 
serial cable. 
[Service] 
 User=root 
Type=oneshot 
RemainAfterExit=yes 
ExecStart=/etc/ax25/doham 
[Install] 
WantedBy=multi-user.target 
# EOF aprx.service 
 
 
Reboot and check that aprx is up and running….. 
 
APRX installation 
 



Download the latest tarball from here 
http://ham.zmailer.org/oh2mqk/aprx/aprx-2.07.svn539.tar.gz 
Best is to do that in your /tmp directory 
 
$ cd /tmp 
$ wget http://ham.zmailer.org/oh2mqk/aprx/aprx-
2.07.svn539.tar.gz 
$ tar -xvzf aprx-2.07.svn539.tar.gz 
$ cd cd aprx-2.07.svn539 
$ ./configure 
$ make clean && make && make install 
 
Now	  read	  the	  aprx	  manual	  and	  make	  your	  own	  settings	  in	  /etc/aprx.conf	  
	  
You	  can	  test	  aprx	  by	  the	  command	  
	  
$	  aprx	  –ddv	  
	  
see	  what	  errors	  appear,	  correct	  and	  you	  should	  be	  up	  and	  running.	  
Adjust	  TX	  delat	  and	  Tail	  in	  the	  soundmodem.conf	  file	  
 
 
[root@pa0esh ~]# systemctl status aprx.service 
Since doham has started you can also do the following from the command 
prompt. 
mheard 
listen -a -p sm0  (provided the ax25 port is called sm0) 
call ...... 
 


