DIXPRS ON A RASPBERRY
05/03/2014 10:48:45 pm

This document describes step by step how to install an iGate / Digipeater on a
Raspberry PI, using soundmodem as the TNC.

It is noted that for the time being, you have to twiddle a bit around with the TX
delay settings of the soundmodem, because I am still implementing the
hardware to make the TX go ON/OFF so for the time being, the TX should be
able to work with VOX.

Since beginning of December there is a possibility to add PTT. See the article

[have updated the install script for aprs on a Raspberry. It now gives you the
selection of installing:

- Soundmodem incl. testing and adjusting of the audio
- Dantracker N7NIX

.+ aprx
- dixprs
-« Xastir
- gpsd

Create a fresh debian wheezy 4Gb card and get in script here. Put it in usr/src,
chmod 755 the file and then run it: /usr/src/aprx.sh

sudo apt-get update & & sudo apt-get -y dist-upgrade & & cd /usr/src && sudo wget
http://www .pa0esh.nl/aprs/rpi/aprx.sh && sudo chmod 755 aprx.sh && sudo /aprx.sh

However, the step-by step method teaches a bit more about what is going on.

Step 1

Create a fresh image of Raspbian “wheezy”, which you can download from
here and where they also provide many links to how to do this....
Personally I use a little programme called PiWriter.
http://sourceforge.net/projects/piwriter/

Since I do not have a HDMI screen for the Raspberry, I use the SSH method,
either direct from a Linux machine or through Putty on windows. Take your
pick.

Find the IP address of the Raspberry after it has booted.

SSH into the machine using pi as the username - The password is raspberry
Execute sudo su

PAOESH Page 1 05-03-14

Then change the su root password by executing passwd
So now we have bot a user (pi) as well as a root account under control.

Step 2

Update the Raspberry to the latest status
$ sudo apt-get update

Now upgrade the Raspberry

$ sudo apt-get upgrade

Since we are going to install dixprs, we require python 2.... (already installed,
but also the python-serial as well as sqlite3 modules

$ sudo apt-get install python-serial sqlite3 libax25 build-essential
python-dev libax25-dev

Since you most likely wish to run the digipeater autonomous, also in case of a
restart, I suggest we move to the root user right now

$ sudo su

On LINUX DIXPRS can communicate to a KISS TNC directly via a serial
interface. However it is advised to use TNC's and modems via AX.25 stack. It
makes other type modems, like USCC card, BAYCOM modem, etc. usable with
DIXPRS. It requires an additional Python module installed, developed for
DIXPRS, called pyax25.

Note: procedure requires libax25, Python development files and basic
development tool chain with GCC installed. They were installed above
(libax25 & python-dev)

Download pyax25.tar.gz and extract to a temporary folder.
* mkdir pyax25
* cd pyax25
* wget https://sites.google.com/site/dixprs/downloads/pyax25.tar.gz
* tar -xzvf pyax25.tar.gz

Then enter

./compile_ax25.py build
./compile_ax25.py install

PAOESH Page 2 05-03-14

Check installation as follows:

Start Python (simply type python) and type

import _ax25

If everything is OK, only prompt displayed, no error message.

For more dixprs information see the website from Béla Markus, HA5D],

The most informative Google groups about dixprs is located at
https://groups.google.com/forum/?fromgroups - !forum/dixprs

Step 3

Create the dixprs directory and cd into it

$ mkdir -p /usr/local/dixprs && cd /usr/local/dixprs

Download the source code from using wget.....

$ wget https://sites.google.com/site/dixprs/downloads/dixprs-
2.2.2.tar.gz

or from the download page on the website

Unpack the tar ball

$

Now chmod all files
$ chmod 755 *

Step 4

Soundmodem and soundmodem tools installation
Skip this paragraph if you are using AX25 or KISS with TNC modem !

S apt-get install soundmodem ax25-tools ax25-apps libax25-dev screen

So now a bit of hardware

[use a very cheap soundcard - from eBay...,
which looked like this and did not cost much.
But that may also create problems. So look
around for USB sound modules, and be
prepared to be disappointed that you may
have to buy another one.

In my case one worked, and one did not...

PAOESH Page 3 05-03-14

Here is the link if it still exists.

Stick the USB dongle into the Raspberry and check what you have got.
$ Isusb

Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

Bus 001 Device 004: ID 148f:5370 Ralink Technology, Corp. RT5370 Wireless Adapter

Bus 001 Device 005: ID 1a40:0101 Terminus Technology Inc. 4-Port HUB

Bus 001 Device 006: ID 0d8c:000e C-Media Electronics, Inc. Audio Adapter (Planet UP-100, Genius G-
Talk)

Bus 001 Device 007: ID 0403:6001 Future Technology Devices International, Ltd FT232 USB-Serial (UART) IC
Bus 001 Device 008: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge / myAVR
mySmartUSB light

The green showed up as the type of sound module and there is plenty of info
about this little machine on the net.

Raspbian “wheezy” comes with the alsa sound system pre installed so let’s see
what we have...

$ aplay -1

wikk List of PLAYBACK Hardware Devices ****

card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA]
Subdevices: 8/8

Subdevice #0:
Subdevice #1:
Subdevice #2:
Subdevice #3:
Subdevice #4:
Subdevice #5:
Subdevice #6:
Subdevice #7:

subdevice #0
subdevice #1
subdevice #2
subdevice #3
subdevice #4
subdevice #5
subdevice #6
subdevice #7

card 1: Device [Generic USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

Hmmm, the first module is the build in sound module, and our usb dongle is
listed as number 2.

However, we wish to make this the primary sound device so we nee to tweek
a little around.

We have to edit the /etc/modprobe.d/alsa-base.conf file to make the USB
sound dongle come first
$ nano /etc/modprobe.d/alsa-base.conf gives us:

autoloader aliases

install sound-slot-0 /sbin/modprobe snd-card-0
install sound-slot-1 /sbin/modprobe snd-card-1
install sound-slot-2 /sbin/modprobe snd-card-2
install sound-slot-3 /sbin/modprobe snd-card-3

PAOESH Page 4 05-03-14

options snd-intel8x0m index=-2
options snd-via82xx-modem index=-2

Now replace the lines

with

and reboot
Now type aplay -l and you should see this

$ aplay -1

k% List of PLAYBACK Hardware Devices *

card 0: Device [Generic

USB Audio Device],

Ttem: Wic (d8 goint 40331 e Sl device 0: USB Audio

[USB Audio]

Subdevices: 1/1
Subdevice #0:

subdevice #0

® 00 £ erikschott — pi@raspberrypi: /usr/local — ssh — 162x54

Now we check
the sound
system:

L] |
] |
L] |
|| EE]
L] |
L] |
L] |
L] |
] |
L] |
L L

Auto Gain Control 05 '03 - 1 4

Start alsamixer, and unmute the sound channels (use F5 and F6 to see more of
the controls, the M-key mutes / unmutes a channel and you with by pressing
the left-arrow / right arrow keys.

Connect a speaker headphone as well as a microphone for the final tests

$ speaker-test -c 2 gets you noise at the headphone switching from left to right.
Next we check if the sound modules are correctly loaded

$ cat /etc/modules

/etc/modules: kernel modules to load at boot time.

#

This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.

Parameters can be specified after the module name.

snd-bcm2835
Here we see that the usb module is not loaded so we change the modules file

$ nano /etc/modules
and add the usb module snd-usb-audio

Note if you are not using the on board sound module at all. You can also
comment it out here

Anyway, after saving the command cat /etc/module should give us the
following:

$ cat /etc/modules

/etc/modules: kernel modules to load at boot time.

#

This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.

Parameters can be specified after the module name.

snd-bcm2835
snd-usb-audio

The next file we have to change completely for this usb sound module is
/etc/asound.conf

Replace it with the following content :

PAOESH Page 6 05-03-14

pcm.dmixer {
type dmix
ipc_key 1024
slave {
pcm "hw:0,0"
period_time 0
period_size 1024
buffer _size 8192
rate 48000
}
bindings {
00
11

}
}

pcm.asymed {
type asym
playback.pcm "dmixer’
capture.pcm "hw:0,0"
}
pcm.dsp0 {
type plug
slave.pcm "asymed"”
}
pcm.!default {
type plug
slave.pcm "asymed"
}
pcm.default {
type plug
slave.pcm "asymed"”
}
ctl.mixer0 {
type hw
card 0

}

Now reboot again, start alsamixer, make sure that ALL controls are at approx.
80%, also the capture. ... press F5 to get there... and press exit

Now record a short soundfile and play back.
Record a file : $ arecord -vv testsound.wav (Ctrl-C to stop)
Play back that same file: $ aplay testsound.wav

PAOESH Page 7 05-03-14

If all is correct, you should hear back whatever you recorded. Fiddle around

with the volume controls for the best result.
You could already connect your radio audio out to the mike input and check

volumes.

PAOESH Page 8 05-03-14

Step 5
The soundmodem configuration file

There are two ways to configure the soundmodem, one using the desktop
utility - for which you have work with X11 on SSH or connect a screen to the
Raspberry

[prefer to enter the file directly into it’s directory /etc/ax25.

$ nano /etc/ax24/soundmodem.conf
And replace it's contents with this

<?xml version="1.0"7>

<modem>

<configuration name="AX25">

<chaccess txdelay="250" slottime="100" ppersist="40" fulldup="0"
txtail="100"/>

<audio type="alsa" device="plughw:0,0" halfdup="1"
capturechannelmode="Mono" />

<ptt file="none" hamlib_model="" hamlib_params="" gpio="0"/>

<channel name="sm0"><mod mode="afsk" bps="1200" f0="1200" f1="2200"
diffenc="1" inlv="8" fec="1" tunelen="32" synclen="32"/><demod
mode="afsk" bps="1200" f0="1200" f1="2200" diffdec="1" inlv="8" fec="3"
mintune="16" minsync="16"/><pkt mode="MKISS" ifname="sm0"
hwaddr="XXXXX-00" ip="44.94.11.8" netmask="255.255.255.0"
broadcast="44.94.11.255" file="/dev/soundmodem0"
unlink="1"/></channel></configuration>

</modem>

Replace XXXXX-00 with your own callsign and SSID. I suggest you use
NOCALL-12 where NOCALL is your callsign.
* sm0 is the interface name, transmit delay (txd) is set at 250 for VOX
operation and TX tail to 100.

Now $ chmod 7555 /etc/ax24/soundmodem.conf and we are almost done

Edit the /etc/axports so that we have the sound module port sm0 in it, by
changing it as shown.

PAOESH Page 9 05-03-14

$ nano /etc/axport

/etc/ax25/axports

#

The format of this file is:

#

name callsign speed paclen window description

#

sm0 PAOESH-12 1200 255 2 VHF APRS (1200 bps)

#2 OH2BNS-9 38400 255 7 TNOS/Linux (38400 bps)
Step 6

Making it all work.....

Testing if soundmodem works... Enter the following command:

$ soundmodem
ALSA: Using sample rate 9600, sample format 2, significant bits 16, buffer size 4800, period size 144
ALSA: Using sample rate 9600, sample format 2, significant bits 16, buffer size 4800, period size 144

If you had the output as above, you're good to go.
When we have sound modem run later on, we will put it's output somewhere
were it will not bother us with the command

The last thing to do is to test if we can transmit.

First we start-up soundmodem

$ soundmodem /etc/ax25/soundmodem.conf -R -M >/dev/null
2>/dev/null&

Note: this method seems to give some problems lately - another option is to
use a screen:

$ screen -dmS sm soundmodem

Then
1. $ /sbin/route add -net 44.0.0.0 netmask 255.0.0.0 dev sm0

2. $ /bin/ping -i 10 44.136.8.58 # (ping packets go out on the audio
each 10 secs, control-C to stop)

3. $ /usr/bin/axcall sm0 k7xyz via sea # (Connect packets go out on
the audio)

If you hear the typical aprs chirp, you're good to go to the end of this chapter,
and that is to write a small start-up script for the ax25 service.

PAOESH Page 10 05-03-14

Now kill soundmodem again
$ killall soundmodem or $ killall screen

We'll put the script in somewhere in the path and call it ax25-up.sh
$ nano /etc/ax25/ax25-up
Enter the following text:

#!/bin/sh

Start ax25 with the soundmodem driver using the port sm0

as defined in /etc/ax25/axports

Raspberry PI with dixprs and soundmodem

PAOESH - April 20

#soundmodem /etc/ax25/soundmodem.conf -R -M >/dev/null 2>/dev/null&
screen —dmS sm soundmodem

sleep 5

/sbin/route add -net 44.94.11.0 netmask 255.255.255.0 dev sm0
echo "Soundmodem started at sm0"

to start dixprs also automatically - uncomment the following line
screen —-dmS dixprs usr/local/dixprs -c /usr/local/config.txt

do not forget to adapt the config file with your own data.

And to complete the process, create a ax25-down script
$ nano /etc/ax25/ax25-down

Enter the following text:

#!/bin/sh

Stop ax25 with the soundmodem driver using the port sm0

as defined in /etc/ax25/axports

Raspberry PI with dixprs and soundmodem

PAOESH - April 2013

killall soundmodem

#killall screen

to stop dixprs also automatically - uncomment the following line
killall screen

PAOESH Page 11 05-03-14

Step 7

Now it’s time to adjust the dixprs config file for use with ax25
It is located at /usr/local/dixprs and we use the config-ax25.txt sample.
Either rename it to config.txt or call this config file with startup of dixprs.

After adapting your personal data, such as call sign etc, pay attention to the
radio part. It should look ow as follows:

[RADIO]

Mandatory parameters

Interface type

INTERFACE=AX25

Device; as listed by ifconfig; it is nbot the ax.25 port name!
DEVICE=sm0

If you did not use the soundmodem , the edit the KISS config sample file and
continue from there. Make sure you have your settings for the serial port
correct, as well as your call+ssid, lat and lon etc etc.

Rename the configuration file to config.txt

DIXPRS is supposed to run in its own screen, but before that we test it
$ /usr/local/dixprs/dixprs.py -c /usr/local/dixprs/config.txt

If all is well, you should see something like this....

*% DIXPRS 2.2.2 - 05-09-2012 - (pid=8473)

AIRO process started [TNC-X FTDI USB to Serial port] (pid=8476))
|GATE process started [host=euro.aprs2.net, port=14580] (pid=8477)
*** WEBSR process started [port=9999] (pid=8478)

*** Connection established

21:10:55z AIRO <- LOCL PAOESH-2>APDI22,WIDE1-1,WIDE2-2:>DIXPRS 2.2.2 up and running
*** Connection successful to T2GYOR
21:10:59z AIRO <- LOCL PAOESH-2>APDI22,WIDE1-1,WIDE2-2:>Connected to T2ZGYOR count 1/0

Step 8

Normally you would want your Raspberry to start dixprs automatically at
boot.

The next little script will take of it, but before that you have to install screen.

PAOESH Page 12 05-03-14

apt-get install screen

Cd into /etc/init.d

$ cd /etc/init.d

Then create the dixprs start-up file

$ nano dixprs

Copy the content below into it, and write it to file.

#! /bin/sh
/etc/init.d/dixprs

BEGIN INIT INFO

Provides: dixprs

Required-Start: $remote_fs $syslog

Required-Stop: $remote_fs $syslog

Default-Start: 2345

Default-Stop: 016

Short-Description: Simple script to start dixprs at boot

Description: A simple script from www.stuffaboutcode.com which will
start / stop a program a boot / shutdown.

END INIT INFO

If you want a command to always run, put it here
cd /usr/local/dixprs

Carry out specific functions when asked to by the system
case "$1" in
start)
echo "Starting dixprs in a screen”
run application you want to start
screen -dmS dixprs /usr/local/dixprs/dixprs.py -c
Jusr/local/dixprs/config.txt

)

stop)
echo "Stopping dixprs screen”
killall screen
9
echo "Usage: /etc/init.d/dixprs {start|stop}"
exit 1
esac

PAOESH Page 13 05-03-14

exit 0

Then
$ chmod 755 dixprs

Test if the script works....
$./dixprs start

screen -r dixprs, should show you the previous start-up information.

*% DIXPRS 2.2.2 - 05-09-2012 - (pid=8473)

AIRO process started [TNC-X FTDI USB to Serial port] (pid=8476))
[GATE process started [host=euro.aprs2.net, port=14580] (pid=8477)
WEBSR process started [port=9999] (pid=8478)

*** Connection established

21:10:55z AIRO <- LOCL PAOESH-2>APDI22,WIDE1-1,WIDE2-2:>DIXPRS 2.2.2 up and running
*** Connection successful to T2GYOR
21:10:59z AIRO <- LOCL PAOESH-2>APDI22,WIDE1-1,WIDE2-2:>Connected to T2ZGYOR count 1/0

Leave the screen by Ctrl-a-d (then dixprs will be running).
Kill it by

$./dixprs stop

but from outside the screen with the name dixprs.....

To register your script to be run at start-up and shutdown, run the following
command:

$ update-rc.d dixprs defaults

Note - The header at the start is to make the script LSB compliant and
provides details about the start up script and you should only need to change
the name. If you want to know more about creating LSB scripts for managing

services, see http://wiki.debian.org/LSBInitScripts

If you ever want to remove the script from start-up, run the following
command:

$ update-rc.d -f dixprs remove

PAOESH Page 14 05-03-14

Bash file

Loginto your Raspberry as pi. then execute sudo su

apt-get update

sudo apt-get install python-serial sqlite3 libax25 build-essential python-dev ax25-tools
libax25-dev

mkdir pyax25

cd pyax25

wget https://sites.google.com/site/dixprs/downloads/pyax25.tar.gz

tar -xzvf pyax25.tar.gz

./compile_ax25.py build

apt-get install python-dev

./compile_ax25.py install

mkdir -p /usr/local/dixprs && cd /usr/local/dixprs

wget https://sites.google.com/site/dixprs/downloads/dixprs-2.2.2.tar.gz
tar -xvzf dixprs-2.2.2.tar.gz

chmod 755 *

PAOESH Page 15 05-03-14

